

IoT enabling PI: towards hyper-connected and interoperable smart containers

Claudio Salvadori, New Generation Sensors srl Authors: Francesco Marino, Ilias Seitanidis, Phuong Viet Dao, Stefano Bocchino, Piero Castoldi and Claudio Salvadori

CINCL consorzio nazionale interuniversitario per le telecomunicazion

IPIC 2019 London (UK), July 11th

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement No. 769119

Agenda

Presentation Sections

SUMMARY

Scope of this presentation is to present the paper "*IoT enabling PI: towards hyper-connected and interoperable smart containers*"

Introduction

Requirements for the realisation of an IoTenabled PI environment

Tailoring the IoT architecture for PI

Interoperability issues

Validation activities

The Physical Internet

Physical Internet (PI) aims at:

- The optimization of logistics processes
- The implementation of a more cost-effective, eco-friendly, service-driven, sustainable supply chain

Exploiting the concepts of the Digital Internet (DI) to the physical world.

The Physical Internet

The PI envisions the realisation of an Open Global Logistics System founded on physical, digital and operational interconnectivity and hyper-connectivity through encapsulation, interfaces and protocols

The PI enables an efficient, sustainable, adaptable and resilient Logistics Web

Internet of Things as enabling technology

The Internet of Things enables the "virtualisation" of the physical objects, connecting these with the DI

Internet of Things as enabling technology

Goods routing and tracking (Where? and When?)

- Making PI-packet position available to all the stakeholders interested on the shipped goods (shippers, senders, receivers, customs, port authorities, canal authorities, etc).
- Enabling the implementation of the goods' routing services (as in the DI), the PI platform has to know the correct position of the goods.

Goods continuous monitoring (How?)

 Implementing the same service done by "CRC" in the DI, the goods has to be monitored to understand whether a packet is "corrupted" or not.

Requirements for the realisation of an IoT-enabled PI environment

NGS_{Srl} (IoT-enabled PI environments requirements

Requirement Name	Requirement Description
loT enablement	Need of the deployment of an IoT network to communicate to the PI <i>open</i> platforms the data collected from the field.
Modularity	Since the need of monitoring <i>modular</i> and <i>encapsulated</i> "PI packets" (packets, container, group of container), also the IoT environment has to be modular, enabling the continuous monitoring and the tracking of the goods.
Composability	The IoT environment has to be capable to compose several IoT modules, enabling the continuous monitoring and tracking of the <i>encapsulated</i> goods.
Interoperable	The IoT environment has to be interoperable at the <i>open</i> remote PI platforms layer (<i>interfaces</i>), as well as at the IoT devices level (<i>protocols</i>).

NGS_{srl} (Intrometed Pl environments requirements)

Requirement Name	Requirement Description	
loT networks pervasivity	Each PI packed has to be continuously monitored, thus an IoT enabled PI environment has to provide a pervasive network solution, thus ubiquitously connecting the PI "packets" to the PI <i>open</i> platform.	
Edge computing enablement	Edge computers can enable the local data processing (e.g., detection of an alarm), the cooperation of the PI IoT environment with different operators (e.g., truck drivers can understand the status of the transported containers) and external infrastructure (e.g., Intelligent Transport Systems).	
Resilience on data loss	The PI IoT environment has to consider devices with local storage functionalities to maintain data whether the communication with the remote platform is not available (e.g., in the middle of the sea).	

Issues to be addressed

2 main issues to be addresse d:

- Definition a tailored IoT architecture for PI
- Interoperability
 - Open IoT environment for the open PI management platform

Tailoring the IoT architecture for PI

NGS_{srl} New Generation Sensors

NGS_{srl}

NGS_{srl}

NGS_{srl}

NGS_{srl} Can we use the regular IoT architecture?

Gateway-Mediated Edge Connectivity and Management Pattern

NGS Can we use the regular lot architecture?

The IoT Architecture for PI

Recursive Gateway-Mediated Edge Connectivity and Management Pattern

The IoT Architecture for PI

Interoperability Definition

Interoperability can be defined as a measure of the degree to which diverse systems, organizations, and/or individuals are able to work together to achieve a common goal.

Classification is provided by ETSI and AIOTI Defined four levels.

Syntactical Interoperability

Technical Interoperability Semantic Interoperability

Organisational Interoperability

Interoperability Definition

Syntactical Interoperability

Technical Interoperability Semantic Interoperability

Organisational Interoperability

Technical Interoperability: it refers to the protocols and the infrastructure needed for those protocols to operate.

Semantic Interoperability: is usually associated with the meaning of the exchanged content.

Syntactical Interoperability: associated with data format and encodings, e.g., RDF, JSON, XML, etc.

Organizational Interoperability: refers to the ability of <u>effectively communicate</u> and transfer meaningful information between organizations.

The path toward an interoperable PI

Validation activities

The Smart PI-Container

Smart Container is:

Evaluated architecture

Needed devices

The FLEXX tracker will allow to:

• tracking the PI-containers

The *Micro-FLEXX gateway* will allow to:

- track the PI-Container along the corridors
- monitor the presence of connected PI-packets encapsulated within it (e.g., monitoring pallets within the container, in a "groupage" configuration)
- collect added value environmental data inside/outside the container, exploiting short range IoT protocols.

KPI to be evaluated

KPI ID	KPI Name	KPI Description
KPI_01	Goods monitoring	Continuously monitor product position, time and quality, which will allow a better control of the logistic efficiency, and of damaged, lost and stolen products (answering to the following 3 questions: When, Where, How?).
KPI_02	Product safety	Improve the product safety, especially for perishable products (e.g., food or pharmaceutical products).
KPI_03	Real time reporting	Make real-time goods' information available and for all stakeholder involved in the transaction.
KPI_04	Support decision making processes	Supporting the planning activities and managing emergencies more quickly.

Evaluation scenario

- enhancement of the reliability of intermodal connections
- Realisation of the synchromodal corridor

New Generation Sensors srl

Strength & Expertise

STARTUP SUMMARY				
OFFERING	Internet of Things solutions for Industry 4.0 and Intelligent Transport Systems	THINGS	Building Internet of Things ecosystems	
LOCATION / INCORPORATION	Pisa; Inc. 2015			
LAST FUNDING	50 k€ - <u>Dec</u> . 2017	(TIONDAN)	Proprietary hardware	
STATUS	Market expansion	LOWIPAR		
CLIENTS	ENEL, Controls, DBA, AVR		Embedded and	
EMPOYEES	3	LOKA	distributed data processing	
WEB-SITE	www.ngs-sensors.com			
Spin@ff Smart Camera				
Impresa Spin-Off della Scuola Sant'Anna				

Team and advisors

New Generation Sensors

New Generation Sensors srl

Claudio Salvadori

claudio.salvadori@ngs-sensors.it