

BUSINESS CASES FOR DATA SHARING

Performance	Performance indicator	Papers
Cost	Distribution cost Inventory cost	Bartlett et al. (2007), Gustin et al. (1995) Barratt and Oke (2007), Beamon (1999), Chen et al. (2000), Ding et al. (2011), Gavirneni (2002), Lee et al. (2000), Ryu et al. (2009), Sahin and Robinson (2005), Yu et al. (2001), Wu and Cheng (2008), Zhang et al. (2011)
	Stock out cost	Clark and Hammond (1997), Kulp et al. (2004)
	Shortage cost	Lee et al. (1997a, 1997b, 2000, 2004), Yu et al. (2001), Disney and Towill (2003a, 2003b)
	Back order penalty cost	Cachon and Fisher (2000)
	Total cost	Lee et al. (2000), Zhao et al. (2002), Wu and Cheng (2008)
Quality	Supplier quality level	Bartlett et al. (2007)
	Internal quality level	Bartlett et al. (2007)
	External quality level	Tse and Tan (2012)
Service level	On time delivery	Beamon (1999), Prajogo and Olhager (2012), Zhou and Benton (2007)
	Customer response time	Beamon (1999), Zhou and Benton (2007)
	Product availability	Barratt and Oke (2007), Ryu et al. (2009)
Flexibility	Volume flexibility	Beamon (1999), Prajogo and Olhager (2012)
	Mix flexibility	Beamon (1999)
	New product flexibility	Beamon (1999)
Time	Manufacturing lead-time	Handfield and Bechtel (2002), Jayaram et al. (1999)
	New product development time	Handfield and Bechtel (2002), Jayaram et al. (1999)
	Cycle time	Kulp et al. (2004)
	Responsiveness	Barratt and Oke (2007)

Morpheus - General

Wednesday, July 10, 2019

COMPLEXITY

TNO innovation for life

INDIVIDUAL CASES VERSUS HOLISTIC APPROACH TRADITIONAL (MESSAGE) STANDARDIZATION IS INSUFFICIENT

4 Morpheus - General

Wednesday, July 10, 2019

TECHNICAL LAYERS OF FUNCTIONALITY

Business Protocol User User Interface AI Platform Services Platform Services **Business Business** functionality functionality **Functional Protocols** Blockchain Technical Services Technical Services IDS Technical Technical Platform(s) Functionality Functionality Technical Protocol(s) Communication Services Communication Services Connecting infrastructure Platform 2 Platform 1 Data sharing infrastructure 8 Morpheus - General

Wednesday, July 10, 2019

BUSINESS SERVICES AND - TRANSACTIONS

- > A service provider offers a business service to customers
- > Business services relate to objects and their properties
- > Examples
 - Container Transport
 - Bulk Transhipment
 - Liquid (oil) bulk Storage
 - > Quality surveillance
 - Customs formalities (import, export, ..)

>

- Transport services can be represented by for instance time tables, voyage schemes, flight schedules, ...
- Publication of business services input to market place services (search and find)

CHOREOGRAPHIES – MODELLING PERSPECTIVE (BPMN)

ONTOLOGIES: COMPLEX STATEMENTS AND STATE OBJECTS

The ontology and thus Morpheus can be further specialized to fit various supply and logistics chains

- Modelling semantics ontology
- Guiding principles
 - Digital twins representation of physical reality (IoT)
 - Business transactions and choreography ontologies by creating views or rules
- Examples of complex statements
 - Bookings, quotations
 - > Orders, shipping instructions
- Representation of complex statements
 - ➤ Views (ontology) import of a core ontology → message structures, JSON-LD
 - > Rules minimal data requirements
 - Example: a transport booking must contain data on cargo, locations, and times

BUSINESS SERVICE SEMANTICS

- > Types of business services
 - Transport, transship. Storage, ...
 - Administrative (formal) procedures, documentation
 - >
- Infrastructure business services
 - > Paths, corridors, traffic management
 - > Exceptions: maintenance, incidents

- Business service semantics (SHACL) rules
- For instance, a transport service should at least contain cargo with their nature, two locations (or one or more geographical areas), a duration (between the locations, within the area or between the areas), and prices and conditions
- Technically: a transport service should contain
 - One of the subtypes of cargo (bulk, pallets, boxes, equipment (containers))
 - > Physical characteristics: min/max weight and/or volume
 - > Transport conditions: reefer, dangerous
 - > A minimal, average, maximal duration
 - > Geographical areas: cities, region(s), country(-ies),...
- Alternative transport services expressed by timetables, voyage schemes, etc.
- Data shared during a business transaction gradually provides more detail, which specify the (SHACL) rules for minimal data sets of interactions. For instance:
 - Booking cargo subtype, totals (weight, volume, no. of packages/containers/pallets/..), two locations, two (indicative) time windows
 - > Order actual cargo with totals per cargo item/container/...
 - Event actual location and action of a physical object at a time

Wednesday, July 10, 2019

innovation for life

41 Morpheus - Modeling

BUSINESS TRANSACTION MANAGEMENT - CONSTRUCTING SUPPLY AND LOGISTICS CHAINS - CONTROL TOWER AND 'SMART CONTRACTS'

38 Morpheus - Modeling

- Outsourcing strategies involving business stakeholders
- (Dynamic) chain planning composing supply chains
- Horizontal and vertical bundling combining/splitting orders and capacity
- Synchromodality (last minute) multimodal planning
- > Smart contracts?
 - > Standardization of such strategies
 - > Triggering other transactions (e.g. payments)
 - Automatically propagate service provider data to customers
 - > Others?

Wednesday, July 10, 2019

COMMODITY USE CASE - TRANSACTION TREE

Buy/sell (products) Visibility of transport and quality assessment (and partly transport ordering) Payment triggering

75 | Morpheus - Commodity Trading Ledger

Wednesday, July 10, 2019

			1			-	_			-														_	_	_		_	_
					Pro	cesse	5						Ro	les									Do	ocum	ents				
		Sprint 1	Sprint 1			Sprint 1	Sprint 1	Sprint 2	Sprint 2	Sprint 1	Sprint 1	Sprint 1	Sprint 1		Sprint 1+2		Sprint 1	Sprint 1 + 3	Sprint 1+3										
CRU(D)	DATA ELEMENTS CRUD MATRIX	In Scope		Duit of Scope	Dut of Scope	In Scope	In Scope	In Scope	In Scope	In Scope	In Scope	In Scope	In Scope	Out of Scope	In Scope	Dut of Scope	In Scope	In Scope	In Scope	Out of Scope	Out of Scope	Out of Scope	Ott of Scope	Dirk of Scope	Dut of Scope	Out of Scope	Dut of Scope	Out of Scope	Out of Scope
VIAIRIA PART – TOTAL 7 DATA LEMENTS)	C = Create U = Update X = Available/Recorded	rade Agreement	/olume & Vessel Nomination	Vash-Out	contract Averaging	Quality Assurance at Loading	contract Execution/Provisional Paymen	Quality Assurance at Unloading	Contract Finalization/Settlement	eller - Trading		eller Trade Execution	Suyer Trade Execution	Ocean Transportation team	trd Party Surveyor	thipping Line	tank	Certificate of Origin	sill of Lading	eller Invoice	ender Advice	urvey Report Loading	nsurance certificate	Aasters Authorization	ertificate of Analyses	suarantee Certificate	feating Instructions	OSFA Combined / Master certificate	reight Payment
	A 1 Commodity	i i i	1-2	+-	+x	tx	1×	t x	1x	R	17	+ R	R	B		+	R	X	x	+ t	- <u>x</u> -t			- <u></u> +	TX 1	- x 1	-±+	- <u>-</u> !	
	A 2 Sustainability Classification (if applicable)	c	1 x	Tx	Tx	Tx.	1x	T x	1 x	R	ŤĈ	R	B	R	B		R	x	x	x	X	E-1	x		XI	X	XI	i	
	A 3 Contract Quantity (mt)	10	-2	H.	12	- Fr	- <u>-</u>	1 m	17	R	1.2	R	B	R	R			x	- <u>-</u> -	÷.	- <u>x</u> -	x			÷ X	- <u>~</u> -			
	C 4 Measured Quantity at Loading (mt)		1-2	֠	Ť	T _c	1÷	ŤΫ	j-=-	R	i R	TR	T _R	- 1	i Tr	r – i		Π	- î 7	r ^e r	i	r-i	<u></u>	r = -jr	÷ i	- ^ j	-^-i	i	
	C 5 Measured Quantity at Longading (mt)	117	1	+	+-	1	1-	1 c	1 x	R	R	B	R		-							1		- +					
	A 6 Unit of Measure (Always MT)	C		+ x	tx	+x	1	+ - x	1-2	R	1-2-	R	R	R	R			x	x	x	x	x	-x-		xt	x	- <u>x</u> +		17
	A 7 Price p/mt (S)	T C	1-2	1 x	Ťx		1 x	î ²	1 x	R	1 č	T R	R	_		۲ <u>–</u> 1	R							r=ri	÷ í			ì	
	A 8 Delivery term	c	1	TX	Tx	1	X	7-	X	R	i c	R	R			- 1	R			x		— -1	-1		- 1			;	
	A 9 FOSFA Condition	c	1	+x	tx		X	+-	X	R	1 c	R	R	- 1								1			-1				
	A 10 Shipment period from	c	1 x	TX	TX	TX.	i x	Î X	i x	R	i c	R	R			r — 1	-			111		— 7		XI	- 7		i	·1	
	A 11 Shipment period to	C	X	(Tx	Tx	X	X	X	X	R	c	R	R											X	171		1		
	B 12 Sold From (Seller)	C	777	Tx	Tx	Tx	X	X	1 x	R	16	TR	R		R	[]			х	X		XI	x		XI	1	XI	.—i	27
	B 13 Sold To (Buyer)	C		X	X	X	X	X	X	R	c	R	R		R				х	X									
	B 14 Exporter of Record / Shipper	C		X	X		х	-	х	с	R	R	R	R		R	-	Х	х										
	B 15 Importer of Record	C	1	Tx	Tx	1	1 x	ĩ-	X	c	R	R	R	R		R									-í		1		
	A 16 Country of Origin	C		X	X	1	x	1	х	R	c	R	R		R			X				- 1			X		1	1	
	C 17 Country of Production		1 c	1	1		1-	1-	1		c	R	R					х							-1				
70 Manushawa - Oamus adity Taradi	ing 1 Belges 18 Port of Departure/Loading Port		116	1777	1	TV.	2-1	5.0	1.1		1.21	1.0	1.5					57	V.	1		1.		Ville	- T		- W		

GUIDELINES - SCOPING A PROJECT

79 Morpheus - Methodology

Wednesday, July 10, 2019

SUPPLY CHAIN VISIBILITY LEDGER - OBJECTIVE

- Automatically propagate events generated by physical assets (trucks, cranes, scanners, etc.) in a controlled way based relationships between stakeholders
- > Orders specify the relationships between stakeholders

14 Morpheus - Visibility

AN EXAMPLE – CONTAINER TRANS-SHIPMENT IN A PORT

CURRENT SITUATION

FEATURES

> A community (or commercial) system can be used to distribute data and address various challenges like

o innovation for life

- > Many stakeholders one point of entry
- > Many stakeholders need to share the same data data distribution, data re-use
- > Different implementation guides of open standards of various stakeholders data transformations

> Data quality

- > Duplication of data to many stakeholders errors due to process changes and (no) propagation
- Status changes are shared too late (e.g. discharge data available after vessel departure) delays in the process, increased lead times

65 Morpheus – Port Transshipment

REAL TIME STATUS SHARING WITH BLOCKCHAIN

66 Morpheus – Port Transshipment

SUPPLY CHAIN VISIBILITY CHOREOGRAPHY

Wednesday, July 10, 2019

for life

15 Morpheus - Visibility

ONTOLOGIES: COMPLEX STATEMENTS AND STATE OBJECTS

The ontology and thus Morpheus can be further specialized to fit various supply and logistics chains

- Modelling semantics ontology
- Guiding principles
 - Digital twins representation of physical reality (IoT)
 - Business transactions and choreography ontologies by creating views or rules
- Examples of complex statements
 - Bookings, quotations
 - > Orders, shipping instructions
- Representation of complex statements
 - ➤ Views (ontology) import of a core ontology → message structures, JSON-LD
 - > Rules minimal data requirements
 - Example: a transport booking must contain data on cargo, locations, and times

SUPPLY CHAIN VISIBILITY DATA STRUCTUF

	Conceptual stru	icture		Implementation st]		
	Data properties	Order	Event	Implementation structure	Order	Event	
	Actor			Actor			innovation
	customer	х	x	customer	х		for life
	service provider	x	x	service provider	х	x	
	identifier	x	x	identifier	х	x	
	Digital Twin			milestone		x	
	Identifier	x	x	timestamp		x	
	Subtype	x	x	encrypted hash		о	
	Digital Twin - place of acceptance			provider of the hash		о	
(—	alternative role	x	x	Digital Twin	x	x	
	planned time	x		Identifier	x	x	
	estimated time		x	Subtype	x	x	
	actual time		x	No. of units		x	
	Digital Twin - place of delivery			place of acceptance	x		
ΚE	alternative role	x	x	time of acceptance	x		
	planned time	x		place of delivery	x		
	estimated time		x	time of delivery	х		
	actual time		x	intermediate place	о		
	Digital Twin - intermediate place			time at intermediate place	о		
	alternative role	x	x	place		x	
	planned time	x		time		x	
	estimated time		x	Speed (transport means)		o	
	actual time		x	Direction (transport means)		о	
	Place - name	x	x	Relation to data		о	
	General cargo - equipment	о	о	URL to data		x	
	number of packages		x	Type of data		x	
	planned stuffing time	x		Data representation standard		x	
	actual stuffing time		x	Digital Twin associaton	о	о	
	planned stripping time	x		Identifier		x	
	actual stripping time		x	Subtype		x	
	Cargo - transport means	о	о	time	0	x	
	planned loading time	х				1	_
	actual loading time		x				
	planned discharge time	х					
	actual discharge time		x				Wednesday, July 10, 2019

HOW DOES THIS WORK – SCENARIO FOR ONE SHIPMENT (SHIPPER, FORWARDER, CARRIER)

17 Morpheus - Visibility

Wednesday, July 10, 2019

EACH STAKEHOLDER CAN ACT IN TWO ROLES

Customer

- > Write (order, service provider, object-id)
- Read (confirm object-id)
- Read (event, milestone, object-id)
- Delte δ Shipment, container, wagon, ...}

Service Provider

- Read (order, customer, object-id)
- Write (confirm object-id)
- Write (event, milestone, object-id)
- Deject ε {shipment, container, wagon, ...}

Customer – Service Provider link

Write (association, object-id-1, object-id-2)

USER INTERFACE FUNCTIONALITY – FIRST DEMO

- > Overview of orders with service providers and their status
 - > Status ε {open, confirmed, milestone}
 - Milestone ε {loaded, discharged}
- > Functions of a service provider on customer orders:
 - > Create an order out of a customer order and select a service provider for that order
 - > Change status of a customer order: open \rightarrow confirmed
 - > Add milestone to a customer order that has no related outstanding orders:
 - > First milestone: loaded
 - > Second milestone: discharged
- > Automatic function shows the propagation of updates
 - **If** new milestone for an outstanding order
 - > Then select all associated customer orders for that outstanding order
 - and for all associated orders write(event, customer order, 'milestone'), where 'milestone' gets the milestone value of the customer order

19 Morpheus - Visibility

SUPPLY CHAIN VISIBILITY LEDGER - CONCLUDING

- > DLT with 'smart contracts' based on business relations ('orders') optimal supports supply chain visibility
- Standardization on process milestones (date/time, place) for digital twins (cargo, equipment, transport means) subject to logistics services (transport, transship):
 -) 'start'
 - 'estimated completion' (ETA, ETD)
 - > 'actual completion' (arrival, depature, loaded, discharged)

Wednesday, July 10, 2019

PLUG AND PLAY – GENERAL APPROACH

- > Business services specify data requirements
 - > For instance: transport services require some type of Digital Twin
 - ➤ Business service data requirements → myOntology
- Database structure (or data interfaces) represented as ontology
- Ontology alignment
 - (Semi-)automatic create mappings between database ontology and myOntology
 - Use of for instance Wordnet and Conceptnet for ontology alignment
 - Annotate the common ontology with mappings to improve ontology alignment

Orchestration of Morpheus APIs and back-offices ¹¹⁷ Morpheus - General

ONTOLOGY ALIGNMENT - OBJECTIVE

- > To cater with the many (bilateral) data transformations
 - Reduce costs
 - > Reduce manual effort and maintenance
- > By (semi-)automatically generate transformations between internal data and (implementation guides of open) standards
 - > SANOM Simulated Annealing

DYNAMIC 'ENERGY' FUNCTION

THE PROPOSED ENERGY FUNCTIONS TO BE MINIMIZED BY SIMULATED ANNEALING IS

$$E(e) = -\left(\sum S_s(e) + \sum S_l(e) + \sum S_{st}(e)\right)$$

The string similarity measure. The Levenstein is utilized in SANOM The linguistic similarity measure. The synonym, antonym are set to 1 and 0, respectively. For hypernym and and hyponyms, 0.5 is considered.

The structural similarity measures. The simple subclass-superclass relation is considered.

innovation for life

day, July 10, 2019

108 Morpheus – Ontology Alignment

SIMULATED ANNEALING – PSEUDO CODE

- \rightarrow Let $s = s_0$
- For k = 0 through k_{max} (exclusive):
 - > $T \leftarrow \text{temperature}(k)$
 - > Pick a random neighbour, $s_{new} \leftarrow neighbour(s)$
 - > If $E(s) \le E(s_{\text{new}})$ then $s \leftarrow s_{\text{new}}$
 - Else if $P(E(s), E(s_{new}), T) \ge random(0, 1)$, then $s \leftarrow s_{new}$
- > Output: the final state *s*

109 Morpheus – Ontology Alignment

SANOM – second best in Ontology Alignment Initiative

110 Morpheus – Ontology Alignment

SANOM FEATURES

> Lexicon – preprocessing to an internal data structure

- Similarity Computation string and linguistic similarity
 - > Textual analysis algorithm
 - Most 'doubles' are zero, they don't get indexed
- > Structural similarity
 - > Warm Initialization near estimate of probable similarities
 - Simulated Annealing fitness
 - > Structure matching (parent)
 - > Property (domain) matching

ONTOLOGY ALIGNMENT IS AT STRUCTURE LEVEL

- > Database scheme alignment (considered too complex)
- Functional view alignment (e.g. order view many bilateral alignments required; sort of implementation guides)
- Open standard alignment (full functionality of a standardized functional view limited value to organizations)
- > Implementation guide alignment
- > Canonical Information Model
 - > Functional view
 - > Open standard
 - > Implementation guide

ONTOLOGY ALIGNMENT EXPERIMENTS

- > Experiment 1
 - > O1 simplified ontology of UN/CEFACT eCMR XSDs (core concepts)
 - > O2 simplified ontology of a Shipping Instruction data structure
- > Experiment 2
 - > O1 Common Information Model
 - LogiCo (EU FP7 SEC Cassandra and EU FP7 INFSO iCargo) <u>www.ontology.tno.nl</u>
 - > 2a O2 simplified ontology of UN/CEFACT eCMR XSDs (core concepts)
 - > 2b O2 simplified ontology of a Shipping Instruction (SI) data structure

THIS COULD BE EXPECTED USING SANOM...

1	.0 shipper	Shipper office name.	object-actor-shipper
1	1 shipper_address	Shipper office street address (this field in many cases will have the full address).	(shipper) object-address
1	2 shipper_city	Shipper office city (may be null and embedded in street address instead).	(shipper) object-address
1	3 shipper_state	Shipper office state (may be null and embedded in street address instead).	(shipper) object-address
1-	4 shipper_postal_code	Shipper office postal code (may be null and embedded in street address instead).	(shipper) object-address
1	5 shipper_country	Shipper office country (may be null and embedded in street address instead).	(shipper) object-address
1	6 forwarder	Forwarder office name.	object-actor-forwarder
1	7 forwarder_address	Forwarder office street address (this field in many cases will have the full address).	(forwarder) object-address
1	8 forwarder_city	Forwarder office city (may be null and embedded in street address instead).	(forwarder) object-address
1	9 forwarder_state	Forwarder office state (may be null and embedded in street address instead).	(forwarder) object-address
2	0 forwarder_postal_code	Forwarder office postal code (may be null and embedded in street address instead).	(forwarder) object-address
2	1 forwarder_country	Forwarder office country (may be null and embedded in street address instead).	(forwarder) object-address
2	2 consignee	Consignee office name.	object-actor-consignee
2	23 consignee_address	Consignee office street address (this field in many cases will have the full address).	(consignee) object-address
24	24 consignee_city	Consignee office city (may be null and embedded in street address instead).	(consignee) object-address
2	25 consignee_state	Consignee office state (may be null and embedded in street address instead).	(consignee) object-address
2	<pre>26 consignee_postal_code</pre>	Consignee office postal code (may be null and embedded in street address instead).	(consignee) object-address
2	27 consignee_country	Consignee office country (may be null and embedded in street address instead).	(consignee) object-address
2	8 first_notify_party	First Notify Party office name.	-
2	9 first_notify_party_address	First Notify Party office street address (this field in many cases will have the full address).	-
3	0 first_notify_party_city	First Notify Party office city (may be null and embedded in street address instead).	-

114 Morpheus – Ontology Alignment

Wednesday, July 10, 2019

FIRST ONTOLOGY ALIGNMENT TEST RESULTS

- > BAD! Only roles e.g. shipper, forwarder, consignee) can be matched, both in experiment 1 and 2.
- Reasons
 - > No common data dictionaire
 - > UN/CEFACT eCMR introduces complete new terminology
 - > CIM (LogiCo) has complex structures and more abstract concepts
 - CIM is incomplete not all concepts of SI can be matched
 - Business perspective
 - > single versus composite business service
 - Representation of cargo

HOW TO MAKE ONTOLOGY ALIGNMENT EFFECTIVE

- > Next experiment add synonyms, etc. to CIM.
- Recommendation
 - > Use a common dictionaire (UN Trade Data Elements Directory) and common terminology
 - > Guidelines for modelling of CIM (and future open standards).

GUIDELINES - SCOPING A PROJECT

79 Morpheus - Methodology

Wednesday, July 10, 2019

GOVERNANCE - STAKEHOLDERS

> Users

- > Supply and logistics enterprises
- > Authorities (inter)national (EU) regulations for global trade
- > Infrastructure managers (public and private)
- > Data service providers providing innovative applications based on a Distributed Ledger
- > Ledger operators
- > Software developers
- Research and academia

124 Morpheus - General

Wednesday, July 10, 2019

BUSINESS MODELS

- > Ledger operators can run multiple nodes
 - > Cloud Service Providers
 - Users (community)

> Rules of engagement

- > Each user connects to one operator
- > In case of failure of an operator, another operator will be selected

Business model (initial thoughts)

- Cloud Service Providers: yearly subscription fee, combined with transaction/data volume fees (up to each cloud service provider)
- > Users/community: cost sharing based on transaction/volume rates of individual users (e.g. authorities)
- > Amongst different operators, agreement is required:
 - Clearing and settlement between operators based on transactions/volumes shared amongst two users or among one user and a data service provider, operating on different operators
 - > Note all other operators will also store the same data, depending on the data management plan
 - Requires monitoring services
- Research and academia free of costs for research 125 Morpheus - General

Wednesday, July 10, 2019

DISTRIBUTED ONTOLOGY DEVELOPMENT AND MAINTENANCE

- Core ontology for logistics (upper ontology)
 - > Digital shadows data representation of physical objects
 - > Business services and interactions
 - Additionally
 - > Terms and conditions (e.g. INCOTERMS)
 - > Tarif and rates, prices and payment conditions
- Specific Models
 - > Specialization of products (e.g. palm oil \rightarrow edible oil \rightarrow liquid bulk \rightarrow bulk)
 - > Document views, e.g. eCMR
 - > Personnel qualifications
 - > Transport safety requirements
 - > Container cleansing requirements
 - Etc.
 - Mode and/or cargo (subtype) specific views
- > Specific authority data requirements
- > Enterprise templates (e.g. role specific)
- 47 Morpheus Distributed Development

INTEROPERABILITY BETWEEN VARIOUS LEDGERS

> Horizontal interoperability

- > Any two ledgers with similar/identical functionality (e.g. two supply chain visibility ledgers)
- > Technical interoperability technical data sharing between the two ledgers
- > Functional interoperability
 - > Specification of a protocol to provide interoperability between the end-user services of both ledgers
 - > Mapping between datatypes and their semantics
 - > Warning: it may not be possible to map all functionality in case end-user services are different
- Vertical interoperability
 - > Any two ledgers with complementary functionality linking two transaction trees (buying with logistics)
 - Technical interoperability technical data sharing between two ledgers
 - > Functional interoperability

for life

DATA SHARING INFRASTRUCTURE GOVERNANCE (BASED ON INTERNET GOVERNANCE)

- Policies and standards
 - > Future developments Architectural Board supported by Engineering and Research Task Force
 - > Policies and rules set by (inter-)governmental organizations and enterprises Governance Forum
 - > Standards standards organizations e.g. ISO, CEN CENELEC, W3C

Operation and services

- > Operating the infrastructure Ledger operators' Group
- > Developing the (open source) software code **Developers Group**
- Data available to Research and Academia for experiments
- Proprietary services governed by individual operators

129 Morpheus - General

Wednesday, July 10, 2019

QUESTIONS?

Information: Wout Hofman <u>Wout.hofman@tno.nl</u> 06-22499890

Moorpheus - General

Wednesday, July 10, 2019