





CHAIRE INTERNET PHYSIQUE

#### Comparison of freight transport centralization and decentralization in the Physical Internet through gamification

Mariam Lafkihi, Eric Ballot and Shenle Pan

Centre de Gestion Scientifique MINES ParisTech, PSL- Research University



• Addressing transport organizations efficiency with interconnection

• Centralized, dedicated and interconnection mechanisms

• Theoretical solutions

• Gamification and behavior

Conclusion and perspectives

### **Transport efficiency**



#### O As a function of network organization (among other factors)

Efficiency = Fill rate x Not empty run

= 0.62 x 0.80



Interconnected network and shared resources

Dedicated network and resources



Why it is not happening?

## **Networks interconnection**





- Computers networks
  - Independent computer networks interconnected by routers (orange)



 The key point is the interconnection to move from a set of independent networks and centrally managed to a more global and globally decentralized network

### Networks interconnection



#### O As a function of network organization (among other factors)

- Computers networks
  - Independent computer networks interconnected by routers (orange)

- Logistics networks
  - Most of the research concentrated on dedicated networks (design, planning and operations)
  - The centralization is not scalable and logistic networks will remain very fragmented

To enable interconnection we need to define how it could work in a hub connecting several LSP or carriers service.



### How a transport service will be bought?



#### O Fragmented markets under innovation pressure



- New technologies (IOT...)
- New players
- New expectations from shippers
- New business models



#### Towards more open, dynamic and decentralized models



- What are the barriers towards more a efficient solution: the Physical Internet?
  - Are the purchasing mechanisms a barrier?
- What rules could be defined to enable interconnection?
  - Design and definition?
  - Efficiency?
  - Impact on decision makers?
- How the stakeholders could put new mechanisms into practice?



| Rules                                               | Definitions                                                                                                                                                                                                                                            |  |  |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Rule 1: En-route<br>improvement                     | At some hubs in the network, shipments must be reallocated to other carriers proposing a lower price.                                                                                                                                                  |  |  |
| Rule 2: Lowest price<br>and best reputation<br>wins | If there is competition, shipments must be allocated/reallocated to the carrier proposing the lowest price. If two carriers are tied for the lowest price, then the carrier with the best reputation will win the shipment auction.                    |  |  |
| Rule 3: No price increase                           | Once a price is promised to the shipper, it cannot be increased when transferring the request(s) from one carrier to another in the event of reallocation.                                                                                             |  |  |
| Rule 4: Individual responsibility                   | Each carrier is responsible for any delays they cause and pay the associated penalty.                                                                                                                                                                  |  |  |
| Rule 5: No halfway<br>drop-out                      | If there is no possibility of reallocation, the carrier in charge<br>must transport the request acquired from the origin to the<br>destination. Reallocation occurs if and only if the request is<br>taken over by another carrier to the destination. |  |  |

### Routing improvement illustration







#### Mechanism implementation at hub level



A marketplace on top of each hub to enable rerouting when between networks when it makes sense



## Methodology



O To test transportation purchasing mechanisms

# Simulation of the theoretical framework

Multi-agent simulation to represent the rational behavior of a set of players

# How the stake holders will behave?

Gamification to understand how the decision are taken by real players (Hamari et al., 2014)

### Simulation of the theoretical framework



#### O 3 scenarios

### Sc.1 centralized planning

A central entity optimizes all the transportation orders Sc.2 Interconnected with a coordinator and no information sharing

No information is shared between carriers or LSP

Sc.3 Interconnected with a coordinator and limited information sharing

The average price is shared on the market



#### Model and mathematical formulation



Subject to



$$\sum_{m \in M} \sum_{rt \in Rt_h} \sum_{RB_k \subseteq RB_{h,rt}; r_i \in RB_k} y_{rt,RB_k}^m = 1, \ \forall r_i \in R_h$$

$$\sum_{m \in M} \sum_{rt \in Rt_h} \sum_{RB_k \subseteq RB_{h,rt}; r_i \in RB_k} RP_{rt,RB_k}^{mt} y_{rt,RB_k}^{mt} \leq RC'_{tr_i} \forall tr_i \in Rtr_h \quad 5.4$$

 $y_{rt,RB_{k}}^{m} \in \{0,1\}, \ \forall \ h \in N, \forall \ m \in M, \forall \ rt \in Rt_{h}, \forall \ RB_{k} \subseteq RB_{h}$ 

5.2 Each carrier can have at most one bundle
5.3 All requests are allocated
5.4 Request Reallocation
5.5 Binary variables



### Results



#### O KPI and Price of Anarchy



## Methodology



O To test transportation purchasing mechanisms

# Simulation of the theoretical framework

Multi-agent simulation to represent the rational behavior of a set of players

# How the stake holders will behave?

Gamification to understand how the decision are taken by real players (Hamari et al., 2014)

### The Freight Transportation Game



#### 2018 version



### The Freight Transportation Game



- Two main objectives
  - Education: raise awareness by doing
  - Research: understand why interconnection happens or not
- Free to use! (You can apply at: chaire-ip@mines-paristech.fr)







#### **IPIC PhD Workshop**

#### Results

|                | Key performance indicators (KPIs)          | Game   | Centralized solution |
|----------------|--------------------------------------------|--------|----------------------|
| Efficiency     | Total transport price (\$)                 | 122.83 | 137.36               |
|                | Total benefit of carriers (\$)             | 18.57  | 26.58                |
|                | Mean filling rate (%)                      | 50.00  | 59.00                |
|                | Total transport (tonne-km)                 | 58.00  | 59.00                |
|                | Total travelled distance per requests (km) | 62.00  | 72.00                |
| Effectiveness  | Number of total delay                      | 2.00   | 5.00                 |
|                | Number of unallocated requests             | 3.00   | 0.00                 |
| Sustainability | Distance of empty runs (%)                 | 16.67  | 0.00                 |





#### First results



#### O Players' behaviors

- Same stable strategy by player
- If a player doesn't win quickly he lowers its price until success
- In a market with a high level of competition the interconnection is more difficult to observe
- Interconnection works even with very low margins

0 ...



 A first set of rules to route unit loads between LSP or carrier is proposed

 The efficiency and effectiveness was assessed in a multi-agents simulation framework

 More research is underway to identify decision biases against or in favor of interconnection

• A foundation for a routing protocol between logistics networks