

Decentralized freight intelligence in the parcel delivery industry

Rosemarie Cramer

Paul Buijs

IPIC 2019

22-8-2019 | 2

Traditional planning approaches

Centralized planning approach

Decentralized planning approach

22-8-2019

Decentralized freight intelligence

Decentralized freight intelligence

Route efficiency vs situational awareness

- Goal: more efficient
 operations for more driving
 time
- > Challenge: Drivers lose some situational awareness

22-8-2019

| 5

Experiment

- Field experiment in real-life operations an international parcel delivery company
 - 2 drivers each six days in total
 - 1 time benchmark
 - 2 times some information
 - 2 times more information
- > Measure: search time

LIFO

22-8-2019

| 6

Search times as % of stop time

Search time distribution over the trips

(ii) segments

(iii) LIFO

22-8-2019 | 9

Decentralized intelligence

> Trade-off

- Efficiency gain by utilizing loading time for driving
- Efficiency drop by loss of situational awareness
- > Use of decentralized information
 - Efficiency drop can be mitigated already with very little information

Shoes	ΓΩU, 1) € SALE -Sux (2000)	
		<u> </u>

22-8-2019 | 10

Volume capacity

Efficiency gains

- Goal: More efficient operations -> more parcels per vehicle -> less vehicles on the road
- Means: use loading time for driving, provide drivers with information
- > Routing constraints
 - Total driving <u>time</u> constraints
 - <u>Volume</u> constraints (no. of parcels per vehicle)

No. of parcels per vehicle	Some information (segments)	More information (LIFO)
160	86.8%	77.2%
155	88.7%	78.9%
150	90.4%	80.4%
145	92.9%	82.6%
140	97.1%	86.4%
135	104.6%	93.0%
130	110.1%	98.4%

Key take-aways

> Decentralized freight intelligence may result in loss of situational awareness, but this can be mitigated already with very little information

> Reduction of 20% in the number of vehicles is feasible

