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A deep decarbonization of the logistics industry is needed.

▪ Enormous amount of CO2 emissions from the freight transportation sector

▪ Modal shift towards less carbon-intensive transportation modes

▪ The Physical Internet

Connect logistics networks into an integrated network

Figure 1. Adapted from Roadmap: Corridors, Hubs and Synchromodality, by ETP-Alice. Retrieved from http:// etp- logistics.eu.
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Synchromodality offers a solution to reduce emissions.



Synchromodality - Towards the Physical Internet.

▪ Multiple transportation modes

▪ Real-time information

➢ Select the best transportation mode at all times

➢ Use modalities more efficiently and exploit all advantages



Synchromodality in a network with stochastic transit times 

▪ Unreliability in transportation system

▪ Optimal transportation decision given the transit time outcome

Synchromodality efficiently copes with uncertainty in transit times.
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Our model constructs optimal transportation routes given the 

stochastic transit times.

Input

▪ Multimodal network

▪ Set of orders

Optimization model 

▪ Construct optimal

transportation routes

▪ MILP

Output

▪ Decision guide

conditional on

transit time outcome



Input of the model

Input

▪ Multimodal network

▪ Set of orders

➢ Input parameters



Input of the model: stochasticity is modeled through scenarios.

Input

▪ Multimodal network

▪ Set of orders

➢ Input parameters

Transit time stochasticity

▪ Transit time scenarios

▪ Probability distribution



The optimization model is formulated as a mixed-integer linear 

programming problem.

Optimization model

▪ Construct optimal

transportation routes

▪ MILP

▪ Construct optimal transportation routes

➢ Routing decisions

➢ Stochasticity: adapt routes to real-time information

▪ Mixed-integer linear programming problem

Minimize - Leg transportation cost

- Terminal transshipment cost

- Overdue penalty cost

Low cost

On-time

delivery



Output of the model

Output

▪ Decision guide 

conditional on the 

transit time outcome

➢ Which decision to take in a terminal,

given the time period in which the decision is to be made



Output of the model



Numerical study



Numerical study - Performance analysis.

▪ Unimodal road transportation

▪ Unimodal rail transportation

▪ Unimodal barge transportation

▪ Multimodal transportation

▪ Synchromodal transportation

One mode Multiple modes Real-time information

x

x

x

x

x x

Value of real-time planning

Common practice



Synchromodality performs well in terms of cost, service quality 

and environmental impact.

Lowest 

cost

Service

quality
Emission 

reduction

Synchromodality

Attract shippers

➢ Synchromodality offers a combination of advantages that allows to achieve

sustainable freight transportation services at a favorable price and service quality.



Numerical study – Sensitivity analyses.

Penalty per period 
of late delivery

Transshipment cost 
in terminals

Carbon tax 
per ton CO2

Reliability of 
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Numerical study – Impact of changing cost parameters.

Synchromodality > Multimodality

▪ Cost

regardless of the parameter value
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Numerical study – Impact of changing cost parameters.

Synchromodality > Multimodality

▪ Cost

▪ Service quality

regardless of the parameter value

➢ Value of real-time information



Numerical study – Impact of carbon tax.

Carbon tax 
per ton CO2



Numerical study – Impact of carbon tax.

100 € / ton CO2
125 € / ton CO2



Numerical study – Impact of reliability.

Reliability of 
transportation modes



Numerical study – Impact of reliability.



Conclusion

We developed a synchromodal planning model to construct optimal transportation routes in a 

multimodal network with stochastic transit times.

Synchromodality offers a combination

of advantages that allows to achieve

sustainable freight transportation services 

at a favorable price and service quality.

Low costs

Service 

quality
Emission 

reduction

Synchromodality
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Additional information



Methodology

Objective function



Optimization model

▪ Construct optimal

transportation routes

▪ MILP
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Objective function

overdue

penalty cost

terminal

transshipment cost

variable leg

transportation cost

on-time deliverylow cost

Optimization model

▪ Construct optimal

transportation routes

▪ MILP

The model minimizes total cost.
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Constraints

▪ Network flow constraints

▪ Expected cost constraints

▪ Expected penalty constraints
Optimization model

▪ Construct optimal

transportation routes

▪ MILP

Subjected to three constraint sets.
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Methodology

Optimization model

Constraints

Expected cost constraints



Methodology

Optimization model

Constraints

Expected penalty 

constraints



Numerical study

Sensitivity analyses



Numerical study – Impact of penalty cost

Penalty per period 
of late delivery



Numerical study – Impact of penalty cost



Numerical study – Impact of transshipment cost

Transshipment cost 
in terminals



Numerical study – Impact of transshipment cost



Numerical study – Sensitivity analyses

Synchromodality > Multimodality

▪ Cost Relative cost reduction ↑ :

▪ Penalty ↑

▪ Transshipment cost ↓

Penalty per period 
of late delivery

Transshipment cost 
in terminals



Numerical study – Impact of carbon tax
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Numerical study – Impact of carbon tax
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